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In the following report we discuss the possibility of
measuring magnetic fields by scattered light. In the
cese of uncorrelated electrons (i.e. ™ & 1) the
electron spectrum is mcdulated with the electron
gyration frequency if a certain condition is fulfilled.
The essential parameters are discussed and scme spectira
are computed numerically.




1. Introduction

The magnetic field in a plasma is a very important quantity
and all methods of measuring it are, therefore, of great
interest. Unfortunately, it is not at all as easy to measure
plasma magnetic fieldsas one might at first believe. All

methods used up to now have serious disadvantages.

The first and most direct method is to use magnetic probes,
which allow local measurement of the magnetic field. The plasma
may be strongly disturbed by the presence of probes, however,
and so this method has had to be abandoned for measurements in
hot plasmas, for instance, in fast theta pinches. This does

not mean that probe measurements are of no use at all. They

are still important and useful for studying colder plasmas,
preionization phenomena and early phases of pinches, etc.

Another possibility is offered by the Zeeman effect. In this
case one measures the line shift produced by the magnetic field.
Here it has to be assumed that Zeeman shifted lines exist with
sufficient intensity. In a pure and hot deuterium plasma, for
example, this is not the case. To achieve sufficient intensity
one has to add high Z-impurities to such an extent that the
plasma properties are essentially changed and the measurement
may become useless.

A third method makes use of the Faraday effect. It does not dis-
turbe the plasma as do the above mentioned methods. It has an-
other disadvantage, however. One measures the integral

J'n(z) B (z) dz along the path of the plane polarized light

beam parallel to the magnetic field B(z) (n(z) is the electron
density), which produces a rotation of the plane of polarisation.
Thus one gets an average value of nB but no information on local

magnetic fields in general.




In principle at least, there is another method which uses

the scattering of light in a magnetoplasma. It is based on

the fact that the scattered spectrum shows the influence of
magnetic fields under certain conditions, i.e. it may show

a modulation with both the gyrofrequencies of electrons and
ions [1,2,}] . In the case of uncorrelated electrons, i.e.

for &« -—-(*9.1 )\9)'4 &4 , (where ;D is the Debye length and k the
modulus of the scattering vector) one is left with the electron
spectrum only, which may be modulated with the electron gyro-
frequency. This method is most promising as far as measurements
of magnetic fields are concerned, and in the following attention

will therefore be restricted to this case.

2. The electron spectrum in the presence of a magnetic field.

In this section we shall derive an expression for the form of
the scattered spectrum, which has been given in more detail in
the above-mentioned papers [1,2,5:[. The intensity is given by
the usual Thomson scattering cross section of the electron and
will not be discussed. As is well known, one has to use laser
light for reasons of intensity. This report deals only with the
form of the spectrum and with the prospects of measuring the
modulation produced by the magnetic field.

Let us consider an electron gyrating in a magnetic field having
perpendicular velocity VY and moving parallel to the field w%ﬁh

parallel velocity Light incident with the wave vector ﬁo

N
and scattered with ﬁ‘ is shifted from its initial frequency
We to W, + Aw . Neglecting the quadratic Doppler effect we

get

(1) Aw = G‘%Z —-Z)? B
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where 'Ei is the scattering vector,
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where A is the wavelength of the incident 1light and @

the scattering angle_(Fig. 1). It is assumed that the laser
pulse is of sufficiently long duration, i.e. long compared
with any other typical time occurring in the problem. Further-
more it is assumed that the light frequency 60°=-B°C is large
compared with the gyration frequency Cdg,vﬂqich, in turn, is
assumed to be large compared with the collision frequency of

the electrons. We can then proceed as follows.

We split ZSOJ into a perpendicular part,
.-5_.)

(3) Aw_[ &= %' 'w_(_
and a parallel part

- > .
(1 Aco, = B-v, = Reo,sinfs

The parallel part is constant for a given electron with constant
parallel velocity'ﬂh,, i.e. as long as it does not collide. The
perpendicular part, however, oscillates with the gyration fre-
quency, i.e. the scattered light may be described as frequency
modulated. /% being the angle between Jg'and the perpendicular
to the magnetic field (Fig. 1), equation (3) leads to

(5) Aw, = )ﬁces/&'vi_sfm(xfo- wﬁt)
where Loﬂ is the gyration frequency
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and 7%an.initial phase which will be taken as zero in the
following, this amounting to a special choice for the origin
of time. Thus the scattered light has the frequency (angular
velocity)

(1 W= W+ Rysin — kv end siveopt
and the phase
t %
x <
(8) q) = S’w(t')clt"—' (wo-r%')“sm/&)‘t* -—b—%—ﬁmwj‘t
Q
The scattered wave is then of the form

(9) W, Con [(wo+ ko, sf»,/%ﬂ'* %%ciﬁ vk WZJC]
&

and its Fourier analysed form is

(10) \{\/N f jm(?%g“ﬁ) c‘n[(w; éw"""‘t@)t* ’thft + w_;_j_r]
d

N=2-00

One observes discrete lines at the frequencies CUO4EVMNWA ifnaﬁ

Their amplitude is given by j}q('%xigfﬁ ,lzw.being the nth
2,

Bessel function. The intensity is then flh .

This is the case of a single electron. If one has many un-
correlated electrons one can simply add the intensities taking
into account the velocity distribution of the electrons.
Assuming a Maxwellian distribution one gets the intensity of
the nth line
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The latter integral can be found in Watson's treatise L4i].
In is the modified Bessel function. Putting
zwazﬁ KT

and normalising so that the total intensity in all-lines is

|

\_/

(12) QA =

unity we get

(13) SM = eXV)(’a) IM (ﬁ) = ()sm(w)clca

because x4
(1) 2 expl-a)I,(2) =
MN=-00

Due to the spread of "0, each line is Doppler broadened, i.e.
each line has Gaussian profile of the form

YR
fmw, n (Aw,)
s e Caon mho ) = P(" BEsi ZKT)
Putting
é___ Co - Co,

(16) FONENE =

e




a single line is described by
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where

) _ R2sin’B 2KT _ :
(18) 4= =t 2adyip

and the total spectrum is

19) S () = [3,(0)- TW—@-MZI”/Q)&V[J%QL]

M- oo

with e
(209 (4(a)de = S = 1

The form of the spectrum depends on the two parameters a and b.
Roughly speaking a is responsible for the form of the spectrum
as a whole, i.e. for its envelope, while b is responsible for
the degree of modulation.

One may distinguish two limiting cases:

a)za<g.1: In this case the spectrum practically contains its
central line only because the intensity of the other lines
becomes negligibly small. The width is given by ‘7; and can
be compared with the width of the spectrum in the absence of
a magnetic field. It appears that the magnetic field contracts
the spectrum by a factor sin/% . a is small either if the
magnetic field is very large of if /34tfg' . In the latter
case shﬁﬁ>¢a1.and the spectrum is fhe same as in the absence
of the magnetic field.
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b) a 1. If in this case b 41 the lines to not overlap
and the envelope of the different sharp linies is given
by In(a) considered as a function of n. Using asymptotic
formulas for In(a) one can easily show that the envelope
is very close to a Gausslan profile with the width (551 .
From a>» 1, b £ 1 it follows that cos/@ el Jies bhe
envelope corresponds to the spectrum without a magnetic
field.

Case (b) might be useful for the measurement of magnetic
field and we shall give a detailed discussion of the parame-
ters involved and some numerically obtained spectra in the
following section. Before that we conclude this section with
some more general remarks.

An electron gyrating in a magnetic field is somewhat like an
atom, the Coulomb forces being replaced by Lorentz forces.
Its spectrum.consists of the gyrofrequency and its harmonics.
The scattering causes a shift of this spectrum to a higher
frequency range and thus 1s similar to Raman scattering.

In a dense plasma the radiation of a gyrating electron is ab-
sorbed and cannot be observed from outside the plasma. As a
result of scattering its spectrum can be shifted to an observ-
able range of frequencies if the light frequency @, is suffi-
ciently large, i.e. well above all resonances of the plasma
under investigation.

Shifting the spectrum to higher frequencies has another impor-
tant consequence concerning the intensities. A nonrelativistic
dipole or a nonrelativistic gyrating electron emits the bulk
of its intensity into the fundamental line and the intensities
of the harmonics are very small [5,6:] . Consider the simplest
case of a linear harmonic dipole. The amplitude of the nth

harmonic is essentially given by

(L wy) = 3, (B oy
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where ?’is the angle between the dipole and the direction of
observation and where e' is the length of the dipole and ;\n
the wavelength of the nth harmonic. For small argument
Y/ o~ Q/An. , 1.e. for the nonrelativistic dipole,
h h
T]wa i (g‘) “’(%%)
n
The physical reason for the appearance of harmonics even for
a harmonic dipole is that the light observed at a given point
comes from different positions occupied by the oscillating
electron at different times. So the observed phase is still
periodic but not harmonic. From this point of view it is
plausible that with 'L/&y,«A the higher harmonics are not im-
portant because the phase differences are then very small.
For a gyrating electron which is a two-dimensional dipole the
reasoning 1s very similar. One has to replace.@ by twice the
radius of gyration 2R. For the shifted spectrum the situation
has completely changed, however, We have to expect that the
essential quantity now is R/)o. This is indeed so. Consider
the argument of In in equation (9), which is

&mm/,, - BRanp - % 0w s cnfy

e

and this is no longer a small quantity because >\o<>\k- This
explains why we can have the harmonics in the shifted spectrum
with appreciable intensity though they do practically not appear

in the original one.

Let us mention a problem which bears some resemblance to the one
discussed above. Using microwave techniques Landauer [7:{ has
observed harmonics of the gyrofrequency emitled by a cold PIG
discharge in helium. The electrons are certainly not relativistic
and the question arises how the emission of harmonics is possible.
According to Landauer the explanation is that the plasma has &
very high index of refraction in this range of frequencies which

provides another way of achieving larger values of R/}_. This




means that the velocity of the electrons is comparable with the
velocity of light in the plasma , which is much smaller than
the velocity of light in vacuo. For this reason Landauver has
introduced the notion of "quasirelativistic" electrons[}h].

The results of the present section can also be applied to aniso-
tropic velocity distributionsof the electrons with different
parallel and perpendicular temperature (T1+ Ty )¢ ‘DS ha g toRIe
replaced by T, in equation (18) for b and by T, in equation (12)
for a. The relation (18) between a and b is no longer valid,
however.

5. Discussion of the relevant parameters

In this section we need.the equations (12), (18) und (19) of
the preceding section only.It is obvious that magnetic fields
can be measured for small values of b only, b & 1. This means
that the gyration frequency has to be sufficiently large com-

pared with the shift produced by the mean parallel velocity.
Thus we have

S. QS
(21) (& = 0395 Mé;"ﬁﬁ N

At the same time we have to require

einé
(22) Xt = BAy = %65 AL F; >4

g |
A value of & = 2 is already sufficient, i1.e. we assume

(23) simé {7 (o (i )
D 4325 |

I

IN
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so that equation (21) yields
<ivh {w

This condition is fulfilled, for example, for ﬁ‘~ a few 10-2

16 -
nlo cm 5 and B o~ 105 G. If XAo= Tooo R = T lo'5 cm
6 o x

(24) &« Mo (=-14]

»

K, equation (23) gives sin& =0,162,

¢ ~ 190. The separation between the lines is CUS = 1,76 x
1o12 sec‘l,which is equivalent to AN = 3.48 . The collision
frequency 1is about 5 x 1lo sec-l, i.e. much smaller than the

and T = 1o

gyrofrequency, in agreement with our initial assumption. So
one can conclude that magnetic fields of about 1050 in
plasmas with electron densities of about 1016cm—3 can be
measured in rrinciple by light scattering.

We have numerically computed some spectra for different
values of a and b. Examples are shown in Figs. 2 - 5.

For befter comparison they are normalized to unity at the
center. The dashed curves represent the Gaussian profiles
for the case of no magnetic field.

4, Conclusion

We have discussed the parameters which are of importance

for measuring the magnetic fields in plasmas by light scatter-
ing. It 1s not the purpose of this report to discuss the
perhaps formidable difficulties which may arise in possible
experiments. We merely wish to draw the attention of experi—
mentalists to this problem, which could perhaps lead to a
very valueable diagnostic method.

We gratefully acknowledge valuable discussions with Dr. B.

Kronast, Dr.G.Landauer and Dr. H. R&hr.
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Fig., 1: Geometry of Scattering.
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